
Hughes Information Technology Systems
Upper Marlboro, MD

813-RD-015-001

EOSDIS Core System Project

Flight Operations Segment (FOS)
Prototyping Results Review (PRR)

Report for the ECS Project

March 1996

813-RD-015-001

Hughes Information Technology Systems
Upper Marlboro, Maryland

Flight Operations Segment (FOS) Prototyping Results
Review (PRR) Report for the ECS Project

March 1996

SUBMITTED BY

Andy Miller /s/ 3/22/96

Andy Miller, FOS Principal Engineer Date
EOSDIS Core System Project

813-RD-015-001

This page intentionally left blank.

iii 813-RD-015-001

Preface

This document defines the prototype results review report for the FOS. The results documented
herein were presented at the FOS Prototype at the FOS Prototype Results Review in August
1995. It is an informal document at the ECS Office Manager level and does not require
Government approval.

For additional technical information pertaining to the FOS prototype, contact Andy Miller at
301-925-0609 or via electronic mail amiller@eos.hitc.com. This document is delivered to
NASA for information only.

iv 813-RD-015-001

This page intentionally left blank.

v 813-RD-015-001

Abstract

This document specifies the FOS prototyping results review report.

Keywords: Prototype, PRR, FOS, Review

vi 813-RD-015-001

This page intentionally left blank.

vii 813-RD-015-001

Change Information Page

List of Effective Pages

Page Number Issue

Title Original

iii through x Original

1-1 and 1-2 Original

2-1 through 2-4 Original

3-1 through 3-24 Original

AB-1 through AB-10 Original

Gl-1 through GL-10 Original

Document History

Document Number Status/Issue Publication Date CCR Number

813-RD-015-001 Original March 1996

viii 813-RD-015-001

This page intentionally left blank.

ix 813-RD-015-001

Contents

Preface

Abstract

1. Introduction

1.1 Identification ... 1-1

1.2 Scope ... 1-1

1.3 Purpose .. 1-1

1.4 Organization .. 1-1

2. Related Documentation

2.1 Parent Document ... 2-1

2.2 Applicable Documents .. 2-1

2.3 Information Documents .. 2-1

3. FOS Prototype Results

3.1 Instrument Support Toolkit (IST) User Interface Prototype ... 3-1

3.1.1 IST User Interface Prototype Purpose .. 3-1

3.1.2 IST User Interface Prototype Approach.. 3-1

3.1.3 IST User Interface Prototype Results.. 3-3

3.2 Planning & Scheduling Prototype ... 3-5

3.2.1 Resource Model Distribution .. 3-5

3.2.2 Planning and Scheduling Accesses ... 3-7

3.2.3 Activity Definition: Design to Development .. 3-8

3.2.4 Activity Constraints .. 3-9

3.3 Command Management Subsystem Studies .. 3-10

x 813-RD-015-001

3.3.1 Planning and Scheduling Interface and Command-Level Constraint Checking... 3-10

3.3.2 Ground Script Changeover... 3-11

3.3.3 Code Reuse Maximization ... 3-11

3.4 Resource Management Prototype .. 3-12

3.4.1 String Manager... 3-12

3.5 Command Prototype .. 3-13

3.5.1 AM-1 Cyclic Redundancy Check .. 3-14

3.5.2 Frame Operation Procedure (FOP) .. 3-14

3.6 Analysis Prototype ... 3-15

3.6.1 Dynamic Linking and User Algorithms ... 3-15

3.6.2 Expert Advisor/Decision Support System ... 3-16

3.6.3 Numerical Analysis Tools.. 3-16

3.7 Data Management Prototype.. 3-17

3.7.1 Distributed Telemetry Retrieval... 3-17

3.7.2 Database Needs and Selection ... 3-18

3.7.3 Persistence Database Interface ... 3-19

Figures

3.2.1.3-1. Resource Model Distribution .. 3-7

Tables

3.1.2.2-1. COTS Graph Evaluation Criteria .. 3-2

3.1.3.2-1. Graph COTS Products Evaluation Summary.. 3-4

Abbreviations and Acronyms

Glossary

1-1 813-RD-015-001

1. Introduction

1.1 Identification

This document is the Flight Operations Segment (FOS) Prototyping Results Review (PRR).

1.2 Scope

This document reflects the February 14, 1996 Technical Baseline maintained by the contractor
configuration control board in accordance with ECS Technical Direction No. 11 dated December
6, 1994. It covers releases A and B for FOS. This corresponds to the design to support the AM-
1 launch.

1.3 Purpose

This document defines the prototype results review report for the FOS. The results documented
herein were presented at the FOS Prototype at the FOS Prototype Results Review in August
1995.

This PRR report contains the results of the FOS prototyping effort during the FOS detailed
design phase. The focus of this phase was to analyze, prototype, and perform studies pertaining
to driving out and verifying specific detailed design issues. These detailed design issues were for
the following FOS subsystems: User Interface, Planning & Scheduling, Command Management,
Resource Management, Command, Analysis, and Data Management. The summary of the
purpose, approach, and results of each of these prototypes is documented in Section 3.0.

1.4 Organization

This document is organized as follows:

Section 1.0 provides information regarding the identification, scope, status, and organization of
this document.

Section 2.0 provides a listing of the related documents, which were used as source information or
this document.

Section 3.0 provides the FOS prototype results reviews for the subsystems.

The section Abbreviations and Acronyms contains an alphabetized list of the definitions for
abbreviations and acronyms used in this volume.

Glossary contains the key terms that are included within this prototyping results review report.

1-2 813-RD-015-001

This page intentionally left blank.

2-1 813-RD-015-001

2. Related Documentation

2.1 Parent Document

The parent documents are the documents from which this FOS Prototyping Results Review
Report’s scope and content are derived.

194-207-SE1-001 System Design Specification for the ECS Project

304-CD-001-003 Flight Operations Segment (FOS) Requirements Specification for the
ECS Project, Volume 1: General Requirements

304-CD-004-003 Flight Operations Segment (FOS) Requirements Specification for the
ECS Project, Volume 2: AM-1 Mission Specific

2.2 Applicable Documents

The following document is referenced within this FOS Prototyping Results Review Report or is
directly applicable, or contains policies or other directive matters that are binding upon the
content of this report.

305-CD-040-001 Flight Operations Segment (FOS) Design Specification for the ECS
Project (Segment Level Design)

2.3 Information Documents

The following documents, although not referenced herein and/or are not directly applicable, do
amplify or clarify the information presented in this document. These documents are not binding
on the content of this FOS Prototyping Results Review Report.

194-201-SE1-001 Systems Engineering Plan for the ECS Project

194-202-SE1-001 Standards and Procedures for the ECS Project

193-208-SE1-001 Methodology for Definition of External Interfaces for the ECS Project

308-CD-001-005 Software Development Plan for the ECS Project

194-501-PA1-001 Performance Assurance Implementation Plan for the ECS Project

194-502-PA1-001 Contractor's Practices & Procedures Referenced in the PAIP for the
ECS Project

604-CD-001-004 Operations Concept for the ECS Project: Part 1-- ECS Overview

604-CD-002-003 Operations Concept for the ECS project: Part 2B -- ECS Release B

2-2 813-RD-015-001

604-CD-003-002 ECS Operations Concept for the ECS Project: Part 2A -- ECS Release
A, Final

604-CD-004-001 ECS Operations Concept for the ECS Project: Part 2 -- FOS

194-WP-912-001 EOC/ICC Trade Study Report for the ECS Project, Working Paper

194-WP-913-003 User Environment Definition for the ECS Project, Working Paper

194-WP-920-001 An Evaluation of OASIS-CC for Use in the FOS, Working Paper

194-TP-285-001 ECS Glossary of Terms for the ECS Project

222-TP-003-008 Release Plan Content Description for the ECS Project

none Hughes Information Technology Company, Technical Proposal for the
EOSDIS Core System (ECS), Best and Final Offer

560-EDOS-0211.0001 Goddard Space Flight Center, Interface Requirements Document
(IRD) Between the Earth Observing System (EOS) Data and
Operations System (EDOS), and the EOS Ground System (EGS)
Elements, Preliminary

NHB 2410.9A NASA Handbook: Security, Logistics and Industry Relations
Division, NASA Security Office: Automated Information Security
Handbook

3-1 813-RD-015-001

3. FOS Prototype Results

3.1 Instrument Support Toolkit (IST) User Interface Prototype

3.1.1 IST User Interface Prototype Purpose

The purpose of this phase of the IST User Interface prototype effort was four fold:

1. To perform risk reduction activities in tackling common FOS low level problems

2. To perform evaluations of COTS graph and table products

3. To engage in prototype activities that would help forward and strengthen the detailed
design

4. To investigate new screen design concepts and functionality

3.1.2 IST User Interface Prototype Approach

3.1.2.1 Risk Reduction

The IST prototype was used as a test bed to prototype and test low level FOS concern areas.
Since the IST prototype was a working entity at the beginning of this prototype period it afforded
a good vehicle for these tests. Two areas were investigated. The first investigation concerned
mitigating the risks of passing classes within interprocess communication. The second
investigation involved an investigation of multiple inheritance. Specifically, does multiple
inheritance support exist on all of the FOS platforms (DEC, SGI, SUN and HP).

3.1.2.2 COTS Evaluations

Each COTS product was evaluated using the same hardware platforms in order to ensure a
uniform evaluation. Care was taken to ensure that the evaluation was not biased by other
processes running on the evaluation platform (e.g., made sure that no one was compiling while a
product was being evaluated with respect to performance).

Evaluation of the following COTS graph products: IDL, ChartObject, XRT/Graph, XRT/3d,
GLG Widgets and Widget Databook was accomplished via the following steps.

• Obtain a copy of the COTS products, including documentation.

• Install the product on the evaluation platform.

• Create a series of graphs using the product.

• Integrate the graphs into the existing FUI prototype. Concentrate on implementing the
capabilities that correspond to evaluation criteria 1, 3, 5, and 6 (see following criteria
Table 3.1.2.2-1).

3-2 813-RD-015-001

• Exercise the graph features in order to score each product with respect to the evaluation
criteria. At a minimum, criteria 1, 3, 5, and 6 will be evaluated using the prototype.
Evaluation of the other criteria will be based upon research of the product literature due
to the schedule constraints of this evaluation.

• Provide any comments that may clarify the evaluation scores.

Once all of the products were evaluated, we compared the overall scores of each and provided a
recommendation. Also included were any concerns or problems that were experienced during
the evaluation of the recommended products.

Table 3.1.2.2-1. COTS Graph Evaluation Criteria
Criteria Rating (0-5) Factor Score

1. Works in a Motif Window** 4

2. Portability (Sun, DEC, HP, SGI, etc.)‘em 4

3. Display parameters over time 4

4. Works in a X-drawing area 4

5. Number of parameters on a graph 2

6. Update in real-time (performance) 2

7. Zoom capability 2

8. Generate postscript file 2

9. Generate postscript w/o displaying the graph 4

10. Dynamically modify the graph axis 1

11. Dynamically modify the graph type 1

12. Ability to select a point on the graph 1

13. Resize the graph 1

14. Display multiple scales on a single graph 1

15. Generate different graphs types (bar, line,...) 1

16. Specify colors 1

17. Specify titles, legends, symbols, etc. 1

18. Indicate parameter limits on the graph 1

19. Understanding the product (how long does it
take a programmer to learn how to use the
features of the product)

1

20. Using the product (how easy is it for a
programmer to implement the features of the
product)

1

21. Overlay a grid on the graph 1

22. Produce 3-D plots 1

23. Product Documentation 1

Total Score

**Note: If the product does not support these features, it will be disqualified from the evaluation
process.

3-3 813-RD-015-001

3.1.2.3 Prototype To Forward Design

Several areas needed to be prototyped to help validate the design decisions being made, as well
as to provide sufficient information and detail for the design. Those areas included the
commanding interface, certain aspects of telemetry displays, low level GUI building blocks, and
certain aspects of the display builder.

3.1.2.4 Screen Concepts

The user interface developers wanted to validate the functionality as well as the usability of our
planned load manager function. The load manager screens provide access to all load
management functionality, including: load ingest, load catalog, load editors, load validation, load
generation, and load scheduling.

3.1.3 IST User Interface Prototype Results

3.1.3.1 Risk Reduction

To mitigate the risk of passing classes within interprocess communication, several different
approaches were attempted. Rogue Wave objects were passed over sockets, DECMsg Queues
and Pure Logic Pipes. All attempts were successful. The results of this investigation showed
that we could pass classes through interprocess communication without being dependent on
either HCL or DEC.

In the investigation of multiple inheritance on the multiple FOS platforms, multiple inheritance
was used with Rogue Wave. Multiple inheritance was indeed supported across the many
platforms. Knowing this helped validate design decisions that were made.

3.1.3.2 COTS Evaluations

The following are the graph evaluation results and the matrix of the evaluated products (Table
3.1.3.2-1).

• IDL : No product or documents information available. Not evaluated.

• Widget Databook : No products or documents information available. Not evaluated.

• ChartObject : A good product, but lacks the functions for updating graph in real-time
mode. Will enhance this part in the next version of the product that is currently in the beta
testing phase. Next version will be released in this coming summer timeframe.

• XRT/Graph : A good product that meets the requirements of our evaluation criteria.
Integrated the product into the existing FUI prototype and connected to the rt_driver to
draw the real-time graph. Prototyping uses double buffering technique and draws on the
motif drawing area, everything works fine.

• XRT/3d : Similar product to XRT/Graph but with 3 dimensional capability.

• GLG Widgets : This prototype doesn't meet our evaluation criteria since it only supports
HP, SUN and PC platforms.

3-4 813-RD-015-001

Table 3.1.3.2-1. Graph COTS Products Evaluation Summary

Graph Criteria

Product 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ChartObject 5 5 3 5 5 1 3 5 4 5 5 5 5 5 5

XRT/Graph 5 5 4 5 5 4 3 5 4 5 5 5 5 5 5

XRT/3d 5 5 4 5 5 3 3 5 4 5 5 5 5 5 5

GLG Widgets 5 2 3 5 5 x 3 5 4 5 5 5 5 5 5

Graph Criteria Total

Product 16 17 18 19 20 21 22 23 Score

ChartObject 5 5 3 3 3 5 3 3 176

XRT/Graph 5 5 3 4 3 5 3 4 188

XRT/3d 5 5 3 2 1 5 5 3 183

GLG Widgets 5 5 3 3 3 5 3 2 161

Notes:

1. All evaluating products are widget level tools. They behave just like a normal widget.
They all can be placed inside a drawing area widget, but the application needs to handle
the events instead of Motif (the product) handling it.

2. For criteria (5), number of parameters on a graph, there is no limit for the products. The
greater the number of parameters drawn on a graph, the slower the process will execute.

3. All products generate the postscript file of the graph widget. This file does not include
the other MOTIF widgets.

4. Criteria (7), (12), (13), and (18) depend upon the developer implementing code in
addition to the graph display widget.

3.1.3.3 Prototype To Forward Design

The commanding areas that were prototyped helped determine the syntax of the command
language, and investigated the problems of converting the C-like grammar of ECL to Lex and
Yacc. For telemetry displays, the designers needed to prototype to understand more about color
maps, platform independence, C++ wrappers around X, and the areas of colors, fonts and
graphics. Low level building blocks that were prototyped included a EcUtListBox class for use
as the basis for all listboxes, four flavors of text fields for display, and an investigation of the
integration of our coding standards with Builder Xcessory. Display builder prototype
investigation included: looking into how to define alphanumerics, graphs, tables and graphics
within the same window; the selection, drag and drop, resize and reposition of objects; and
learning how to wrap dynamic page display items in C++.

3-5 813-RD-015-001

3.1.3.4 Screen Concepts

Mockups of the screens associated with the load manager were developed. The Command
Management developers, the flight operations team, and GSFC representatives were then given
demonstrations of the screens. They were also allowed to use the mockups themselves, to get a
feel for how the screens were to be used. Feedback was solicited from these parties to help
strengthen the screen design concepts.

3.2 Planning & Scheduling Prototype

3.2.1 Resource Model Distribution

3.2.1.1 Purpose

Performance testing was performed during the phase 4 prototype due to concerns that the design
set for the resource model process needed to be refined.

3.2.1.2 Approach

In order to investigate possible bottlenecks in the system, three designs were
prototyped/analyzed. The three designs included a single, central resource model process
running at the EOC, a single master resource model at the EOC with slave resource models
running at the ISTs, and multiple resource models running independently at both the EOC and
ISTs. The results of the prototyping and analysis are described herein.

3.2.1.3 Results

The performance of a single resource model running at the EOC was tested simulating 9 ISTs
and 1 EOC machine all running connected to one resource model process. Initial scheduling
incurred no performance problems. Subsequent scheduling caused the single resource model
process to hang since it had to both perform scheduling of the new activities and distribute the
existing schedule out to client tools located at the IST sites. Although the single resource model
would require no additional coding or design work, it was deemed unsuitable due to performance
problems. In addition, a single resource model process would incur a single point of failure for
the P&S suite of software.

The second design analyzed consisted of again a single resource model acting as a master to
slave resource model processes running out at the ISTs. This design manifested the same
problems as the single resource model process in that the master resource model posed as a
single point of failure and its distribution duties were only lessened by a small factor.

The third and final design introduced a new process called the data distributor. The data
distributor process was made to be run as a companion process to the resource model and to
perform the function of distributing schedule changes to other resource models that happen to be
running at the time.

Figure 3.2.1.3-1 demonstrates the various stages involved in distributing a message through the
data distributor network. The large circles on the diagram represent data distributor groups, each

3-6 813-RD-015-001

group being a set of distributor processes, usually within a single geographic location. Within
the groups, smaller circles represent the data distributors themselves, and the number within each
circle indicates the data distributor's priority within its group. A line represents a link between a
data distributor and its resource model. Arrows indicate the flow of a distribution message from
one process to another, and the number on each arrow identifies which stage corresponds to that
distribution message being sent. The overall context of this diagram is that of a distribution
message originating at a resource model and propagating out to all other resource models within
the distribution network.

Stage 1: The SRM sends a scheduling message to its data distributor; the scheduling message
gets packaged in a distribution message.

Stage 2: The data distributor sends a copy of the distribution message to each of the other data
distributors within its group (group 3).

Stage 3: The original data distributor (priority 5, group 3) sends a copy of the distribution
message to the highest priority running data distributor within each group external to group 3
(priority 3, group 1 and priority 6, group 2). The other data distributors within group 3 (priority
1 and priority 4) forward the distribution model to their resource models.

Stage 4: The data distributors which have just received a message (priority 3, group 1 and
priority 6, group 2) immediately forward a copy of the distribution message to their resource
models.

Stage 5: The same data distributors send a copy of the distribution message to each of the other
data distributors within their groups.

Stage 6: Each distributor that has just received a message forwards that message to its resource
model.

3-7 813-RD-015-001

1
1

2

2

3

3

4

5

G r o u p 3

1

3

4

4

5

5

5
6

6 6

6

G r o u p 2

4

1

2

3

5 5

6

6

G r o u p 1

3

3

D a t a D i s t r i b u t o r s

R e s o u r c e M o d e l s

D i s t r i b u t i o n M e s s a g e

Figure 3.2.1.3-1. Resource Model Distribution

3.2.2 Planning and Scheduling Accesses

3.2.2.1 Purpose

Confusion arose during formal and informal demonstrations of the prototype software whenever
scheduling access restrictions were discussed. Alternate methods for handling the write access to
a schedule needed to be prototyped in order to design a better solution.

3-8 813-RD-015-001

3.2.2.2 Approach

In addition to the existing pull down menus available at the top of the timeline display, there will
be a menu for toggling to the timeline display that shows accesses. Accesses provide a method
of reserving a portion of a resource on which to perform scheduling. This will prevent two or
more users who have write permission on a resource from simultaneously scheduling over the
same portion of the resource.

3.2.2.3 Results

After the user brings up the access display, a timeline showing the same resources is shown with
user accesses displayed. To the left of each resource is a check box that will toggle accesses on
and off. This will provide a simple method for a user to remove their access when they have
finished scheduling over their resource(s).

The timeline tool is used to display accesses because this gives the user an easy interface on
which to view accesses. Since accesses have an associated resource and start and stop time, they
can be displayed similarly to scheduled activities. Also, because the timeline tool already exists
for displaying activities, this tool was easily modifiable to display user accesses.

3.2.3 Activity Definition: Design to Development

3.2.3.1 Purpose

The transition process from design to development was investigated by the P & S team. The
purpose of this investigation is to make the development towards the final release package more
efficient. This is accomplished by looking for process improvements in each phase of full-scale
development.

3.2.3.2 Approach

The approach used was to take an actual design and start developing the application by following
the design specification. The first step of the procedure is for the developer to have a basic
understanding of how the application works. Once the developer understands the functionality of
the application, coding can begin. The developer would first generate skeleton templates from
the Stp/OMT CASE tool. These templates are code blocks that are set up to meet the FOS
coding style guideline. Using skeleton templates, the developer can integrate comments from the
data dictionary. To code specific functionality of the application, the developer would translate
the program description language (PDL) into C++ code. At the same time, fine-tuning of the
prototype design is necessary because it is likely that there are a few minor discrepancies in the
design. The next step is to use screen mock-ups as guides to develop application screens. At this
point, the developed application is ready for debugging and testing.

3.2.3.1 Results

The result of this investigation will help all future developments because improvements can be
made at different points during the transition from design to development. The most important
discovery is that the developer needs to prioritize coding. This means classes need to be coded in

3-9 813-RD-015-001

a specific order to eliminate the paralyzing effect of code interdependency. By coding classes
with common functionality first, these classes will be ready for use when needed thus improving
development efficiency.

3.2.4 Activity Constraints

3.2.4.1 Purpose

The Planning and Scheduling subsystem checks three primary types of constraints: instrument
and spacecraft subsystem mode transitions, algorithmic constraints(e.g. shared resource
consumption, slew limitations), and user-defined temporal constraints (e.g. activity A not during
activity B). Delphi (a set of class libraries upon which the current prototype is based) provides
resource modeling and allocation, as well as hooks for checking algorithmic constraints. Based
upon what Delphi provides, the phase 4 prototype focused on evaluating options for providing
user-defined, database-driven constraint checking.

3.2.4.2 Approach

Three different solutions for defining and evaluating user-defined constraints were considered:
the Planning and Resource Reasoning (PARR) libraries developed by Goddard; a COTS set of
class libraries (consisting of classes for finite capacity scheduling and resource allocation)
developed by ILOG; and a custom solution building on the constraint checking already provided
by Delphi.

3.2.4.1 Results

The PARR libraries from Goddard provide the ability to define activities, constraints for those
activities and scheduling strategies to be used in scheduling and rescheduling those activities.
The Delphi class libraries provide activities as well and a method of scheduling those activities.
Unfortunately, the incompatibilities between the two types of activities, coupled with differences
in collection classes used by the two libraries forces extensive rework of either class library in
order to integrate the two libraries together. Therefore, due to the cost of integrating the two
libraries, PARR was eliminated as a viable option. Evaluating the PARR libraries, however,
provided a great deal of insight into the types of constraints that the system would need to model.

The second class library evaluated for constraint checking was a library built by ILOG.
Although ILOG's class library provides strong resource optimization and rescheduling strategies,
the classes overlapped functionality already provided by the Delphi class libraries. The overlap
in functionality would make integration of the two class libraries difficult and would produce
either duplicate information (increasing memory requirements) or extra function calls in order to
share information between similar, but different, classes (reducing run-time efficiency).
Furthermore, the cost of the ILOG libraries coupled with the cost of training developers using
ILOG's libraries makes ILOG's solution prohibitive.

Finally, as an alternative to integrating a COTS product into the current design, a custom solution
using the strengths of Delphi was investigated. By adding no more than ten lines of code, the
current prototype was extended to handle two types of user-defined constraints (A during B, and

3-10 813-RD-015-001

A not during B). This quick prototype revealed that, in general, developing the types of rules
needed to define is more difficult than writing the code necessary to implement those types of
rules. As mentioned earlier, PARR provided great insight into the types of rules that the system
would need to support and helped define the final design of the system. Based on this prototype
and the study of PARR, an estimate of only three to five hundred additional lines of code will be
needed in order to implement the types of rules supported by PARR.

3.3 Command Management Subsystem Studies

The following are the description and results of studies done for Command Management
Subsystem (CMS). Studies were done on the Planning and Scheduling interface when it comes
to command-level constraint checking, the ground script changeover, and code reuse
maximization.

3.3.1 Planning and Scheduling Interface and Command-Level Constraint
Checking

3.3.1.1 Purpose

The purpose of this study was to address concerns about the performance when constraint
checking the command list generated from the detailed activity schedule (DAS) and to design a
mechanism for the definition of constraints.

3.3.1.2 Approach

The Wind/Polar CMS and PARR constraint checking processes were studied. Information on
constraints was requested from Lockheed Martin Corporation. The identified constraint rule
types were discussed with FOT to determine completeness. And finally, the need for interactive
constraint checking was examined.

3.3.1.3 Results

The results of the research for the performance issues when checking the list generated by the
DAS are as follows. The PDR design stated that activities would be passed to CMS as they are
interactively scheduled but it has been decided that activities will instead be sent to CMS in the
form of a DAS list for command-level constraint checking. This will reduce the amount of data
to be passed between PAS and CMS. Activity definitions will be command-level constraint
checked at definition time which will reduce the probability of command-level constraint
violations in scheduling or load generation. Interactive command-level constraint checking when
activities are scheduled can be eliminated from the ops concept because: (1) activity constraints
will be checked at scheduling and command-level constraints are checked at activity definition
time, (2) command-level constraint violations are infrequent, and (3) command level constraints
resulting from interaction of activities are even less frequent.

The results of the research on constraint checking rules is as follows. FOS will use the database
of constraint rules to perform constraint checking which was the method also used by
Wind/Polar and PARR. The set of rule types in the FOS design has been selected from

3-11 813-RD-015-001

Wind/Polar rule types, PARR rule types and FOT suggestions. Since most command-level
constraints will not be defined until shortly before launch, software will be written for each type
of rule and the rules in the database will be instances of rule types. This allows the software to
be completed before all the command-level constraints are defined. Constraints will be
associated with commands in the database to facilitate access. The DAS command list will be
designed as a doubly linked list to allow forward and backward search for constraint satisfiers.
The Command Model process will spawn a new process to perform constraint checks, allowing
for simultaneous checking of the DAS list, RTS definitions, activity definitions, and procedure
definitions.

3.3.2 Ground Script Changeover

3.3.2.1 Purpose

The purpose of this study was to address the concerns of the changeover of the ground script.
The transitions must be streamlined from one ground script to the next. There must be an
elimination of the need for configuration management of ground scripts.

3.3.2.1 Approach

The operations concept was discussed with the FOT to present current and proposed concepts
and solicit feedback. The PDR design between CMS and FUI was analyzed.

3.3.2.3 Results

The PDR states that the CMS will create a ground script file when a new DAS is received. The
ground script was in the form of an ASCII file which FUI would then read in and convert the text
into objects. The design has been changed to the following. CMS will maintain a continuous
Ground Schedule. When a new DAS is received by CMS the directives will be merged into the
Ground Schedule. The user will then request a portion of the Ground Schedule based on a time
span input by the user. A ground script will then be generated by CMS and passed to FUI. The
ground script is a file made up of directives in a format that FUI can directly read in without any
conversions. Previous user edits of ground scripts will be retained by FUI so that when new
portions of the ground schedule are loaded the edits will be merged into the newly requested
ground script. The user will be notified if the request is not contiguous.

3.3.3 Code Reuse Maximization

3.3.3.1 Purpose

The purpose of this study was to determine how to get the maximum reuse of software across
FOS subsystems.

3-12 813-RD-015-001

3.3.3.2 Approach

The Prototype design of the PAS interface and the CMS processes were analyzed. The PDR
design of CMS and other FOS subsystems were analyzed. And other missions’ CMS were
analyzed.

3.3.3.3 Results

The use of object oriented design and implementation allows for code reuse. Since CMS, FUI
and DMS will be dealing with directives, a common directive class will be created that all the
groups will use. Studies of other missions’ CMS yielded data on mission specific functionality
and generic CMS functionality. The CMS design was changed so that the mission specific
functionality was contained in a limited number of classes. This maximizes code reuse between
missions.

3.4 Resource Management Prototype

3.4.1 String Manager

The PDR architectural concept placed a single Resource Management Subsystem (RMS) process
on each EOC Real-Time Server for the management of real-time software resources. After PDR
the RMS process migrated to EOC and IST User Stations to manage the real-time telemetry
resources that would be allocated there to serve decommutated telemetry to user interface
displays. Even though the core responsibilities of the User Station and RTS String Manager
processes were much the same, their interfaces and visibility into the activities within the EOC
became different by virtue of their residence on different hosts. To accommodate these subtle
differences without writing software processes dedicated to the different versions of this
application, the concept of making the process role based was added to allow the same software
process to respond differently to system events based on its host. The User Station RMS process
in this role based design was responsible for the interface with FOS User Interface (FUI) to
receive user requests; the allocation of resources for services that were dedicated to a single user;
and communication with the RTS RMS processes to determine what resources are available
system-wide to the users, and to forward user requests that effect the allocation of real-time
resources in the RTSs. The RTS RMS process was responsible for the allocation of real-time
resources on the RTSs, and the interface with the User Station RMS process.

3.4.1.1 Purpose

The purpose of the RMS String Manager process prototype was two-fold. The first goal of the
Resource Management prototype was to prove the distributed and role based process design to be
feasible and capable of providing the flexibility and evolvability that was intended. The second
goal of the prototype was to use the User Station RMS and RTS RMS processes to test
communications mechanisms that were under consideration at the time between processes that
reside on the same and on different hosts. The inter-task and inter-CPU communication
mechanisms that were evaluated included the Hughes Class Library (HCL) HMessage and the
Rogue Wave class library with TCP/IP socket implementations.

3-13 813-RD-015-001

3.4.1.2 Approach

User Station and RTS RMS processes were developed with the capability to exchange real-time
service requests. In addition, the RTS RMS process upon receipt of a real-time service request,
was capable of creating a logical string that provided the prototype Telemetry Decom processing
as well as a telemetry packet generator to produce telemetry data for decommutation by the
Decom process. With this capability, the prototype was able to prove that the two RMS
processes acting in different roles could be configured to communicate with each other and could
respond differently to the same request for service. In order to evaluate the communications
mechanisms that were under consideration at the time, the prototype was first developed using
the HCL HMessage class, and then later modified to use the Rogue Wave/socket implementation
to provide the same capability.

3.4.1.3 Results

During the prototype effort and as the RMS design matured, the RMS task definition was
modified to separate the management and monitoring capabilities of the subsystem. Initially
three software processes emerged and two prevailed to provide independent functionalities. The
RMS String Manager process became responsible for acting upon user requests for real-time
services, configuration changes, and failovers, and the allocation and management of real-time
resources employed in response to those requests. This process would reside on both the RTSs
and the User Stations within the EOC. The RMS Hardware Monitor and Software Monitor
processes became responsible for monitoring the real-time hardware and software resources
respectively, that are needed by the String Manager process. Later, the task definitions were
revisited and the Hardware and Software Monitor processes were combined so that all
monitoring functionality was provided by a single Resource Monitor process. This process
would reside only on the RTSs within the EOC.

Another by-product of the prototype effort was the development of the RMS "smart request"
object. These objects contain an operation that can execute the functionality in the object itself,
in this case a request for service. When request objects were received by the RMS User Station
and subsequently forwarded to the RTS String Manager process, the respective String Manager
request handler need only invoke the execute operation within the request to process it. This
capability provides flexibility in the RMS design by allowing the addition and deletion of
requests with no impact to the existing design. This "smart request" concept was later adopted
by other FOS subsystem applications.

Finally, having successfully implemented an RMS String Manager process that could be
executed on different host machines and exhibit different behavior based on where it is executed,
the concept of the distributed, role-based RMS was incorporated into the subsystem critical
design.

3.5 Command Prototype

The Command Subsystem handles the validation, verification and transmission of commands to
the spacecraft. The CCSDS (Consultative Committee for Space Data Systems) protocol is used
to ensure reliable transmission of commands. The CCSDS protocol consists of FOP (Frame

3-14 813-RD-015-001

Operation Procedure) on the sending end (ground) and FARM (Frame Acceptance and Reporting
Mechanism) on the receiving end (spacecraft). Thus, FOP is implemented in the Command
Subsystem. Inside FOP, two main mechanisms are used: CRC (Cyclic Redundancy Check) and
"go-back-n" re-transmission technique.

3.5.1 AM-1 Cyclic Redundancy Check

The CRC is built with each command before transmission so that the receiving end (spacecraft)
can use this CRC information to detect errors.

3.5.1.1 Purpose

In prior projects, the FOS team had encountered various difficulties in implementing CRC.
Therefore, the objective was to build a CRC prototype to reduce risk and to evaluate different
CRC implementations.

3.5.1.2 Approach

It was decided that a CRC class library would be built to handle the CRC mechanism specified in
AM-1 ICD-106 for Telecommand Codeblock encoding. The class library could be used to
derive new classes that handle different CRC mechanisms in the future.

3.5.1.3 Results

The results of the AM-1 CRC prototype effort were threefold. First, a reusable, generic CRC
class for production use was developed. Second, a virtual CRC algorithm concept to facilitate
the implementation of different CRC algorithms was devised. And finally the results generated
from the CRC class against the tests supplied by the spacecraft manufacturer were tested and
verified.

3.5.2 Frame Operation Procedure (FOP)

The FOP uses a "go-back-n" retransmission technique to resend commands rejected by the
spacecraft because of errors. The CLCWs (Command Link Control Word) are sent from the
receiving end (spacecraft) to the sending end (ground) to provide status on the receipt of
commands.

3.5.2.1 Purpose

The main purposes of the FOP prototype were to demonstrate the functionality of FOP via
software implementation, the interpretation of the downlinked CLCWs and the synchronization
of the sending end (ground) and the receiving end (spacecraft).

3.5.2.2 Approach

In the protocol, the CSS API for interprocess communication was utilized. A table-lookup
method, which used an array of function pointers, to implement the states of the FOP machine
was used. The prototype team created CLCWs and generated 26 of 41 potential FOP events.

3-15 813-RD-015-001

3.5.2.3 Results

The table-lookup method was found to be both complicated to implement and difficult to
maintain. Based on the prototype result, the state machine method was chosen in the formal
design. In the state machine, each state of the FOP machine is represented by a class; thus, the
operation of the FOP machine can be mapped easily into software.

3.6 Analysis Prototype

The Analysis subsystem performs health and safety checks by determining long term trends. One
tool available to the spacecraft engineer is the ability to create customized User Algorithms to
perform analysis on back orbit data. This feature uses dynamic linking to enable the user's
algorithm to be incorporated into the analysis process at run time. Long term trending results can
be viewed as is, or they can be modified using several numerical analysis techniques. The
Analysis subsystem also has the ability to detect failures and anomalies in real time. A key
component of this feature is the Solid State Recorder (SSR) monitoring tool. It uses a rule based
expert system to monitor the progress of an SSR playback, and recommend recovery procedures
should SSR playback data be missed.

3.6.1 Dynamic Linking and User Algorithms

3.6.1.1 Purpose

Dynamic linking is a critical risk area that needs to be explored thoroughly in order to establish
the reliability of dynamic linking as an implementation of user defined algorithms. To do this, it
is necessary to verify the capabilities of vendor supplied dynamic linking libraries provided with
the development systems.

3.6.1.2 Approach

The Sun libraries provided with Solaris 2.3 C++ compiler were used to build a dynamic linking
class, which uses shared objects as input. The Sun Solaris 2.3 C, C++, and FORTRAN compilers
were used to generate shared objects which performed trivial calculations. Shared objects were
successfully linked and executed using dynamic linking class.

3.6.1.3 Results

Sun Solaris 2.3 proved to have excellent support for dynamic linking. HP documentation
promises similar support, although actual working code was not produced due to time
limitations. DEC, IBM, and SGI need further investigation. However, preliminary findings show
support for dynamic linking among all three.

Dynamic linking is possible without vendor support. But it is much easier when support such as
that provided with Solaris 2.3 is available. In the future, it would be advisable to verify
availability of dynamic linking features on remaining platforms.

3-16 813-RD-015-001

3.6.2 Expert Advisor/Decision Support System

3.6.2.1 Purpose

In order to better understand the development process of an expert system, it is necessary to gain
experience with the expert system tool, in this case RTworks. Because the first prototype used a
different expert system tool, CLIPS, a migration of the first prototype to RTworks provides an
excellent way to accomplish this

In order to use RTworks Inference Engine, it is necessary to establish a data interface with
RTworks. After this is accomplished, the SSR model from the previous prototype can be
modified to accommodate the RTworks Inference Engine.

The interface between the rule base and the expert system programmer is the RTworks rule
editor. An important feature of the RTworks rule editor is that it is simple to use. This will allow
the spacecraft experts to add or modify rules, as needed. In order to demonstrate this ease of use,
it is necessary to allow the end user, the FOT, to explore the rules used in the prototype and
verify the friendliness of the RTworks rule editor.

Finally, since the integration of C language function calls into RTworks rules is an important
feature, several basic C functions will be created to demonstrate this feature.

3.6.2.2 Approach

A mock data source was connected to RTworks. The basic SSR maintenance goals were
incorporated into a set of rules in RTworks. FOT members explored the RTworks rule editor to
verify its simplicity. C functions were created to do basic computation within a rule.

3.6.2.3 Results

RTworks performed baseline SSR analysis smoothly. The data interface with RTworks was
easily implemented. The FOT found the RTworks rule editor easy to use, despite it’s many
features. C function calls were integrated into RTworks rules with minimal effort.

As a result of this prototype, FOS will use RTworks as the engine for the Expert Advisor and
Solid State Recorder analysis tool. In the future, prototyping efforts will focus on creating a
larger rule base to test RTwork’s efficiency, including the addition of more parameters, such that
real-time telemetry data rates are input into RTworks. The prototype will be an excellent tool to
further explore SSR management approach.

3.6.3 Numerical Analysis Tools

3.6.3.1 Purpose

There are several COTS packages available to ECS for performing numerical computation. The
goal is to evaluate the following ECS available COTS packages for performing numerical
analysis:

IDL (Features: graphics, plotting, and numerical analysis)

3-17 813-RD-015-001

IMSL (Features: numerical analysis only)

3.6.3.2 Approach

In order to test the flexibility and performance of the two packages, basic numerical functions
with both packages will be tested. The results will be compared for speed and ease of use. Also,
both packages will be compared for future extensibility.

3.6.3.3 Results

IDL requires connection to a standalone process, and the interface to the standalone process is
non-trivial. Error handling is difficult when the standalone process encounters an error.

IMSL is a C Library of numerical functions, and requires no separate process or interface. Error
handling is handled in standard C fashion .

IMSL and IDL have similar functionality. However, since IMSL performs numerical analysis
only, and is easier to integrate, it has more potential for expanded use in the future. The FOS
Analysis subsystem will use IMSL for numerical analysis functions. In the future, the FOS
Analysis subsystem will incorporate IMSL function calls into the RTworks expert advisor, as
well as explore benefits of IMSL functionality to everyday spacecraft operations.

3.7 Data Management Prototype

3.7.1 Distributed Telemetry Retrieval

3.7.1.1 Purpose

The purpose of the distributed telemetry retrieval prototype effort was to address the
performance and architecture using a network attached Data Storage Unit.

3.7.1.2 Approach

Telemetry files containing 24-hours of data were created on the Data Storage Unit. Additionally,
the telemetry retrieval processes were created on the network attached workstations and the
archiver process was created on the Data Storage Unit. A test was performed reading different
telemetry files while the archiver process was writing to the data storage unit at 50kbs.

3.7.1.3 Results

Simulating network traffic from everyday workload the following results were realized:

- Benchmarks

1 telemetry retrieval performed at 200 times real-time

4 simultaneous retrievals performed at 77 times real-time

8 simultaneous retrievals performed at 35 times real-time

12 simultaneous retrievals performed at 24 times real-time

3-18 813-RD-015-001

20 simultaneous retrievals performed at 13 times real-time

As a result of the prototype, the design has been updated to reflect distributed telemetry retrieval
approach.

3.7.1.4 Future Goals

The operational LAN will be benchmarked to verify results.

3.7.2 Database Needs and Selection

3.7.2.1 Purpose

An analysis of various database systems was performed to determine the best database solutions
for the FOS.

3.7.2.2 Approach

An analysis of database needs was performed which included an evaluation of the FOS database
needs, an evaluation of the current Object Oriented DBMS technology and a comparison of two
RDBMSs, Oracle and Sybase.

3.7.2.3 Results

The evaluation of the FOS database needs identified the areas of the FOS which would benefit
from the use a database system. These functional areas included PDB support, file and telemetry
metadata and support to the Planning and Scheduling Subsystem and the Command Management
Subsystem.

The Object Oriented DBMS evaluation provided the development team with insight into the
latest technology in database systems. As a result, it was determined that this technology was
still immature and would not provide many of the capabilities found in a RDBMS.

The third evaluation reviewed the technology of RDBMSs. It was found that these systems were
reliable and, through their maturity, they could provide a full set of development and
maintenance tools.

The final result from the combination of evaluations and analysis was that the FOS would be best
supported utilizing the features of a RDBMS. The final selection was to use Sybase.

3.7.3 Persistence Database Interface

3.7.3.1 Purpose

The persistence database interface prototype was performed to determine if Persistence would be
cost effective as an database interface tool.

3-19 813-RD-015-001

3.7.3.2 Approach

A database with telemetry metadata tables was set up in the Sybase RDBMS and Persistence
interface classes were built to use with the Sybase tables. Table operations were performed
including adds, deletes, reads, writes and updates. Reverse engineering was performed.

3.7.3.3 Results

The benefits of Persistence included providing a mechanism to build the interface classes to
Sybase from the object model and it's support of C++ and standard SQL. It was also able to
generate, create, read, update, and delete methods based on the object model. Lastly, it supports
locking.

This prototype also provided insight into the negative aspect of using Persistence. The results
revealed that Persistence generated a large number of lines of code that would not be used by the
FOS. It also was unable to integrate with StP/OMT to perform reverse engineering. Finally, it is
only supported on the SUN and HP and the product was very expensive.

The negative aspects of this product outweighed the positive and therefore was not selected to
support the FOS.

3.7.3.4 Future Goals

The FOS is currently evaluating RogueWaves DBTools for application interfaces to Sybase.

3-20 813-RD-015-001

This page intentionally left blank.

AB-1 813-RD-015-001

Abbreviations and Acronyms

ACL Access Control List

AD Acceptance Check/TC Data

AGS ASTER Ground System

AM Morning (ante meridian) -- see EOS AM

Ao Availability

APID Application Identifier

A

R

A

M

Automated Reliability/Availability/Maintainability

ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer (formerly
ITIR)

ATC Absolute Time Command

BAP Baseline Activity Profile

BC Bypass check/Control Commands

BD Bypass check/TC Data (Expedited Service)

BDU Bus Data Unit

bps bits per second

CAC Command Activity Controller

CCB Change Control Board

CCSDS Consultative Committee for Space Data Systems

CCTI Control Center Technology Interchange

CD-ROM Compact Disk-Read Only Memory

CDR Critical Design Review

CDRL Contract Data Requirements List

CERES Clouds and Earth's Radiant Energy System

CI Configuration item

CIL Critical Items List

CLCW Command Link Control Words

CLTU Command Link Transmission Unit

CMD Command subsystem

CMS Command Management Subsystem

CODA Customer Operations Data Accounting

AB-2 813-RD-015-001

COP Command Operations Procedure

COTS Commercial Off-The-Shelf

CPU Central Processing Unit

CRC Cyclic Redundancy Code

CSCI Computer software configuration item

CSMS Communications and Systems Management Segment

CSS Communications Subsystem (CSMS)

CSTOL Customer System Test and Operations Language

CTIU Command and Telemetry Interface Unit (AM-1)

DAAC Distributed Active Archive Center

DAR Data Acquisition Request

DAS Detailed Activity Schedule

DAT Digital Audio Tape

DB Data Base

DBA Database Administrator

DBMS Database Management System

DCE Distributed Computing Environment

DCP Default Configuration Procedure

DEC Digital Equipment Corporation

DES Data Encryption Standard

DFCD Data Format Control Document

DID Data Item Description

DMS Data Management Subsystem

DOD Digital Optical Data

DoD Department of Defense

DS Data Server

DSN Deep Space Network

DSS Decision Support System

e-mail electronic mail

ECS EOSDIS Core System

EDOS EOS Data and Operations System

EDU EDOS Data Unit

EGS EOS Ground System

AB-3 813-RD-015-001

EOC Earth Observation Center (Japan);

EOS Operations Center (ECS)

EOD Entering Orbital Day

EON Entering Orbital Night

EOS Earth Observing System

EOSDIS EOS Data and Information System

EPS Encapsulated Postscript

ESH EDOS Service Header

ESN EOSDIS Science Network

ETS EOS Test System

EU Engineering Unit

EUVE Extreme Ultra Violet Explorer

FAS FOS Analysis Subsystem

FAST Fast Auroral Snapshot Explorer

FDDI Fiber Distributed Data Interface

FDF Flight Dynamics Facility

FDIR Fault Detection and Isolation Recovery

FDM FOS Data Management Subsystem

FMEA Failure Modes and Effects Analyses

FOP Frame Operations Procedure

FORMATS FDF Orbital and Mission Aids Transformation System

FOS Flight Operations Segment

FOT Flight Operations Team

FOV Field-Of-View

FPS Fast Packet Switch

FRM FOS Resource Management Subsystem

FSE FOT S/C Evolutions

FTL FOS Telemetry Subsystem

FUI FOS User Interface

GB Gigabytes

GCM Global Circulation Model

GCMR Global Circulation Model Request

GIMTACS GOES I-M Telemetry and Command System

AB-4 813-RD-015-001

GMT Greenwich Mean Time

GN Ground Network

GOES Geostationary Operational Environmental Satellite

GSFC Goddard Space Flight Center

GUI Graphical User Interface

H&S Health and Safety

H/K Housekeeping

HST Hubble Space Telescope

I/F Interface

I/O Input/Output

ICC Instrument Control Center

ICD Interface Control Document

ID Identifier

IDB Instrument Database

IDR Incremental Design Review

IEEE Institute of Electrical and Electronics Engineers

IOT Instrument Operations Team

IP International Partners

IP-ICC International Partners-Instrument Control Center

IPs International Partners

IRD Interface requirements document

ISDN Integrated Systems Digital Network

ISOLAN Isolated Local Area Network

ISR Input Schedule Request

IST Instrument Support Terminal

IST Instrument Support Toolkit

IWG Investigator Working Group

JPL Jet Propulsion Laboratory

Kbps Kilobits per second

LAN Local Area Network

LaRC Langley Research Center

LASP Laboratory for Atmospheric Studies Project

LEO Low Earth Orbit

AB-5 813-RD-015-001

LOS Loss of Signal

LSM Local System Manager

LTIP Long-Term Instrument Plan

LTSP Long-Term Science Plan

MAC Medium Access Control;

Message Authentication Code

MB Megabytes

MBONE Multicast Backbone

Mbps Megabits per second

MDT Mean Down Time

MIB Management Information Base

MISR Multi-angle Imaging Spectro-Radiometer

MMM Minimum, Maximum, and Mean

MO&DSD Mission Operations and Data Systems Directorate (GSFC Code 500)

MODIS Moderate resolution Imaging Spectrometer

MOPITT Measurements Of Pollution In The Troposphere

MSS Management Subsystem

MTPE Mission to Planet Earth

NASA National Aeronautics and Space Administration

Nascom NASA Communications Network

NASDA National Space Development Agency (Japan)

NCAR National Center for Atmospheric Research

NCC Network Control Center

NEC North Equator Crossing

NFS Network File System

NOAA National Oceanic and Atmospheric Administration

NSI NASA Science Internet

NTT Nippon Telephone and Telegraph

OASIS Operations and Science Instrument Support

ODB Operational Database

ODM Operational Data Message

OMT Object Model Technique

OO Object Oriented

AB-6 813-RD-015-001

OOD Object Oriented Design

OpLAN Operational LAN

OSI Open System Interconnect

PACS Polar Acquisition and Command System

PAR Planning and Resource Reasoning

PAS Planning and Scheduling

PDB Project Data Base

PDF Publisher's Display Format

PDL Program Design Language

PDR Preliminary Design Review

PI Principal Investigator

PI/TL Principal Investigator/Team Leader

PID Parameter ID

PIN Password Identification Number

POLAR Polar Plasma Laboratory

POP Polar-Orbiting Platform

POSIX Portable Operating System for Computing Environments

PSAT Predicted Site Acquisition Table

PSTOL PORTS System Test and Operation Language

Q/L Quick Look

R/T Real-Time

RAID Redundant Array of Inexpensive Disks

RCM Real-Time Contact Management

RDBMS Relational Database Management System

RMA Reliability, Maintainability, Availability

RMON Remote Monitoring

RMS Resource Management Subsystem

RPC Remote Processing Computer

RTCS Relative Time Command Sequence

RTS Relative Time Sequence;

Real-Time Server

S/C Spacecraft

SAR Schedule Add Requests

AB-7 813-RD-015-001

SCC Spacecraft Controls Computer

SCF Science Computing Facility

SCL Spacecraft Command Language

SDF Software Development Facility

SDPS Science Data Processing Segment

SDVF Software Development and Validation Facility

SEAS Systems, Engineering, and Analysis Support

SEC South Equator Crossing

SLAN Support LAN

SMA S-band Multiple Access

SMC Service Management Center

SN Space Network

SNMP System Network Mgt Protocol

SQL Structured Query Language

SSA S-band Single Access

SSIM Spacecraft Simulator

SSR Solid State Recorder

STOL System Test and Operations Language

T&C Telemetry and Command

TAE Transportable Applications Environment

TBD To Be Determined

TBR To Be Replaced/Resolved/Reviewed

TCP Transmission Control Protocol

TD Target Day

TDM Time Division Multiplex

TDRS Tracking and Data Relay Satellite

TDRSS Tracking and Data Relay Satellite System

TIROS Television Infrared Operational Satellite

TL Team Leader

TLM Telemetry subsystem

TMON Telemetry Monitor

TOO Target Of Opportunity

TOPEX Topography Ocean Experiment

AB-8 813-RD-015-001

TPOCC Transportable Payload Operations Control Center

TRMM Tropical Rainfall Measuring Mission

TRUST TDRSS Resource User Support Terminal

TSS TDRSS Service Session

TSTOL TRMM System Test and Operations Language

TW Target Week

U.S. United States

UAV User Antenna View

UI User Interface

UPS User Planning System

US User Station

UTC Universal Time Code;

Universal Time Coordinated

VAX Virtual Extended Address

VMS Virtual Memory System

W/S Workstation

WAN Wide Area Network

WOTS Wallops Orbital Tracking Station

XTE X-Ray Timing Explorer

AB-9 813-RD-015-001

This page intentionally left blank.

GL-1 813-RD-015-001

Glossary

GLOSSARY of TERMS for the Flight Operations Segment

activity A specified amount of scheduled work that has a defined start
date, takes a specific amount of time to complete, and comprises
definable tasks.

analysis Technical or mathematical evaluation based on calculation,
interpolation, or other analytical methods. Analysis involves the
processing of accumulated data obtained from other verification
methods.

attitude data Data that represent spacecraft orientation and onboard pointing
information. Attitude data includes:

• Attitude sensor data used to determine the pointing of the
spacecraft axes, calibration and alignment data, Euler angles or
quaternions, rates and biases, and associated parameters.

• Attitude generated onboard in quaternion or Euler angle form.

• Refined and routine production data related to the accuracy or
knowledge of the attitude.

availability A measure of the degree to which an item is in an operable and
committable state at the start of a "mission" (a requirement to
perform its function) when the "mission" is called for an
unknown (random) time. (Mathematically, operational
availability is defined as the mean time between failures divided
by the sum of the mean time between failures and the mean down
time [before restoration of function].

GL-2 813-RD-015-001

availability
(inherent) (Ai)

The probability that, when under stated conditions in an ideal
support environment without consideration for preventive action,
a system will operate satisfactorily at any time. The “ideal
support environment” referred to, exists when the stipulated
tools, parts, skilled work force manuals, support equipment and
other support items required are available. Inherent availability
excludes whatever ready time, preventive maintenance
downtime, supply downtime and administrative downtime may
require. Ai can be expressed by the following formula:

 Ai = MTBF/ (MTBF + MTTR)

Where: MTBF = Mean Time Between Failures

MTTR = Mean Time To Repair

availability
(operational) (Ao)

The probability that a system or equipment, when used under
stated conditions in an actual operational environment, will
operate satisfactorily when called upon. Ao can be expressed by
the following formula:

Ao = MTBM / (MTBM + MDT + ST)

Where: MTBM = Mean Time Between Maintenance
(either corrective or preventive)

MDT = Mean Maintenance Down Time where
corrective, preventive administrative and logistics
actions are all considered.

ST = Standby Time (or switch over time)

baseline activity
profile

A schedule of activities for a target week corresponding to
normal instrument operations constructed by integrating long
term plans (i.e., LTSP, LTIP, and long term spacecraft operations
plan).

build An assemblage of threads to produce a gradual buildup of system
capabilities.

GL-3 813-RD-015-001

calibration The collection of data required to perform calibration of the
instrument science data, instrument engineering data, and the
spacecraft engineering data. It includes pre-flight calibration
measurements, in-flight calibrator measurements, calibration
equation coefficients derived from calibration software routines,
and ground truth data that are to be used in the data calibration
processing routine.

command Instruction for action to be carried out by a space-based
instrument or spacecraft.

command and data
handling (C&DH)

The spacecraft command and data handling subsystem which
conveys commands to the spacecraft and research instruments,
collects and formats spacecraft and instrument data, generates
time and frequency references for subsystems and instruments,
and collects and distributes ancillary data.

command group A logical set of one or more commands which are not stored
onboard the spacecraft and instruments for delayed execution, but
are executed immediately upon reaching their destination on
board. For the U.S. spacecraft, from the perspective of the EOS
Operations Center (EOC), a preplanned command group is
preprocessed by, and stored at, the EOC in preparation for later
uplink. A real-time command group is unplanned in the sense
that it is not preprocessed and stored by the EOC.

detailed activity
schedules

The schedule for a spacecraft and instruments which covers up to
a 10 day period and is generated/updated daily based on the
instrument activity listing for each of the instruments on the
respective spacecraft. For a spacecraft and instrument schedule
the spacecraft subsystem activity specifications needed for
routine spacecraft maintenance and/or for supporting instruments
activities are incorporated in the detailed activity schedule.

direct broadcast Continuous down-link transmission of selected real-time data
over a broad area (non-specific users).

GL-4 813-RD-015-001

EOS Data and
Operations System

(EDOS) production
data set

Data sets generated by EDOS using raw instrument or spacecraft
packets with space-to-ground transmission artifacts removed, in
time order, with duplicate data removed, and with quality/
accounting (Q/A) metadata appended. Time span or number of
packets encompassed in a single data set are specified by the
recipient of the data. These data sets are equivalent to Level 0
data formatted with Q/A metadata.

For EOS, the data sets are composed of: instrument science
packets, instrument engineering packets, spacecraft housekeeping
packets, or onboard ancillary packets with quality and accounting
information from each individual packet and the data set itself
and with essential formatting information for unambiguous
identification and subsequent processing.

housekeeping data The subset of engineering data required for mission and science
operations. These include health and safety, ephemeris, and
other required environmental parameters.

instrument • A hardware system that collects scientific or operational data.

• Hardware-integrated collection of one or more sensors
contributing data of one type to an investigation.

• An integrated collection of hardware containing one or more
sensors and associated controls designed to produce data on/in an
observational environment.

instrument activity
deviation list

An instrument's activity deviations from an existing instrument
activity list, used by the EOC for developing the detailed activity
schedule.

instrument activity
list

An instrument's list of activities that nominally covers seven
days, used by the EOC for developing the detailed activity
schedule.

instrument
engineering data

subset of telemetered engineering data required for performing
instrument operations and science processing

GL-5 813-RD-015-001

instrument
microprocessor
memory loads

Storage of data into the contents of the memory of an
instrument’s microprocessor, if applicable. These loads could
include microprocessor-stored tables, microprocessor-stored
commands, or updates to microprocessor software.

instrument resource
deviation list

An instrument's anticipated resource deviations from an existing
resource profile, used by the EOC for establishing TDRSS
contact times and building the preliminary resource schedule.

instrument resource
profile

Anticipated resource needs for an instrument over a target week,
used by the EOC for establishing TDRSS contact times and
building the preliminary resource schedule.

instrument science
data

Data produced by the science sensor(s) of an instrument, usually
constituting the mission of that instrument.

long-term
instrument plan
(LTIP)

The plan generated by the instrument representative to the
spacecraft's IWG with instrument-specific information to
complement the LTSP. It is generated or updated approximately
every six months and covers a period of up to approximately 5
years.

long-term science
plan (LTSP)

The plan generated by the spacecraft's IWG containing
guidelines, policy, and priorities for its spacecraft and
instruments. The LTSP is generated or updated approximately
every six months and covers a period of up to approximately five
years.

long term spacecraft
operations plan

Outlines anticipated spacecraft subsystem operations and
maintenance, along with forecasted orbit maneuvers from the
Flight Dynamics Facility, spanning a period of several months.

GL-6 813-RD-015-001

mean time between
failure (MTBF)

mean down time
(MDT)

The reliability result of the reciprocal of a failure rate that
predicts the average number of hours that an item, assembly or
piece part will operate within specific design parameters.
(MTBF=1/(l) failure rate; (l) failure rate = # of failures/operating
time.

Sum of the mean time to repair MTTR plus the average logistic
delay times.

mean time between
maintenance
(MTBM)

The mean time between preventive maintenance (MTBPM) and
mean time between corrective maintenance (MTBCM) of the
ECS equipment. Each will contribute to the calculation of the
MTBM and follow the relationship: 1/MTBM = 1/MTBPM +
1/MTBCM

mean time to repair
(MTTR)

The mean time required to perform corrective maintenance to
restore a system/equipment to operate within design parameters.

object Identifiable encapsulated entities providing one or more services
that clients can request. Objects are created and destroyed as a
result of object requests. Objects are identified by client via
unique reference.

orbit data Data that represent spacecraft locations. Orbit (or ephemeris)
data include: Geodetic latitude, longitude and height above an
adopted reference ellipsoid (or distance from the center of mass
of the Earth); a corresponding statement about the accuracy of
the position and the corresponding time of the position (including
the time system); some accuracy requirements may be hundreds
of meters while other may be a few centimeters.

playback data Data that have been stored on-board the spacecraft for delayed
transmission to the ground.

GL-7 813-RD-015-001

preliminary resource
schedule

An initial integrated spacecraft schedule, derived from instrument
and subsystem resource needs, that includes the network control
center TDRSS contact times and nominally spans seven days.

preplanned stored
command

A command issued to an instrument or subsystem to be executed
at some later time. These commands will be collected and
forwarded during an available uplink prior to execution.

principal
investigator (PI)

An individual who is contracted to conduct a specific scientific
investigation. (An instrument PI is the person designated by the
EOS Program as ultimately responsible for the delivery and
performance of standard products derived from an EOS
instrument investigation.).

prototype Prototypes are focused developments of some aspect of the
system which may advance evolutionary change. Prototypes may
be developed without anticipation of the resulting software being
directly included in a formal release. Prototypes are developed
on a faster time scale than the incremental and formal
development track.

GL-8 813-RD-015-001

raw data Data in their original packets, as received from the spacecraft and
instruments, unprocessed by EDOS.

• Level 0 – Raw instrument data at original resolution, time
ordered, with duplicate packets removed.

• Level 1A – Level 0 data, which may have been reformatted or
transformed reversibly, located to a coordinate system, and
packaged with needed ancillary and engineering data.

• Level 1B – Radiometrically corrected and calibrated data in
physical units at full instrument resolution as acquired.

• Level 2 – Retrieved environmental variables (e.g., ocean wave
height, soil moisture, ice concentration) at the same location and
similar resolution as the Level 1 source data.

• Level 3 – Data or retrieved environmental variables that have
been spatially and/or temporally resampled (i.e., derived from
Level 1 or Level 2 data products). Such resampling may include
averaging and compositing.

• Level 4 – Model output and/or variables derived from lower
level data which are not directly measured by the instruments.
For example, new variables based upon a time series of Level 2
or Level 3 data.

real-time data Data that are acquired and transmitted immediately to the ground
(as opposed to playback data). Delay is limited to the actual time
required to transmit the data.

reconfiguration A change in operational hardware, software, data bases or
procedures brought about by a change in a system’s objectives.

SCC-stored
commands and
tables

Commands and tables which are stored in the memory of the
central onboard computer on the spacecraft. The execution of
these commands or the result of loading these operational tables
occurs sometime following their storage. The term “core-stored”
applies only to the location where the items are stored on the
spacecraft and instruments; core-stored commands or tables
could be associated with the spacecraft or any of the instruments.

GL-9 813-RD-015-001

scenario A description of the operation of the system in user’s
terminology including a description of the output response for a
given set of input stimuli. Scenarios are used to define
operations concepts.

segment One of the three functional subdivisions of the ECS:

CSMS -- Communications and Systems Management Segment

FOS -- Flight Operations Segment

SDPS -- Science Data Processing Segment

sensor A device which transmits an output signal in response to a
physical input stimulus (such as radiance, sound, etc.). Science
and engineering sensors are distinguished according to the
stimuli to which they respond.

 • Sensor name: The name of the satellite sensor which was used
to obtain that data.

spacecraft
engineering data

The subset of engineering data from spacecraft sensor
measurements and on-board computations.

spacecraft
subsystems activity
list

A spacecraft subsystem's list of activities that nominally covers
seven days, used by the EOC for developing the detailed activity
schedule.

spacecraft
subsystems resource
profile

Anticipated resource needs for a spacecraft subsystem over a
target week, used by the EOC for establishing TDRSS contact
times and building the preliminary resource schedule.

target of opportunity
(TOO)

A TOO is a science event or phenomenon that cannot be fully
predicted in advance, thus requiring timely system response or
high-priority processing.

GL-10 813-RD-015-001

thread A set of components (software, hardware, and data) and
operational procedures that implement a function or set of
functions.

thread, as used in
some Systems
Engineering
documents

A set of components (software, hardware, and data) and
operational procedures that implement a scenario, portion of a
scenario, or multiple scenarios.

toolkits Some user toolkits developed by the ECS contractor will be
packaged and delivered on a schedule independent of ECS
releases to facilitate science data processing software
development and other development activities occurring in
parallel with the ECS.

	1. Introduction
	1.1 Identification
	1.2 Scope
	1.3 Purpose
	1.4 Organization

	2. Related Documentation
	2.1 Parent Document
	2.2 Applicable Documents
	2.3 Information Documents

	3. FOS Prototype Results
	3.1 Instrument Support Toolkit (IST) User Interface Prototype
	3.2 Planning & Scheduling Prototype
	3.3 Command Management Subsystem Studies
	3.4 Resource Management Prototype
	3.5 Command Prototype
	3.6 Analysis Prototype
	3.7 Data Management Prototype

